MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A HANNE BECKECKS BECKECKI KUUKKK "ANSENS" SINGSKO KANSEN MRC Technical Summary Report #2851 CONCAVITY OF SOLUTIONS OF THE POROUS MEDIUM EQUATION Philippe Benilan and Juan Luis Vazquez Mathematics Research Center University of Wisconsin—Madison 610 Walnut Street Madison, Wisconsin 53705 August 1985 DTTC FILE COPY (Received July 24, 1985) S DTIC ELECTE NOV 7 1985 Approved for public release Distribution unlimited Sponsored by U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 85 11 06 055 ### UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER CONCAVITY OF SOLUTIONS OF THE POROUS MEDIUM EQUATION Philippe Benilan*,(1) and Juan Luis Vazquez**,(1),(2) Technical Summary Report #2851 August 1985 #### **ABSTRACT** We consider the problem $$\begin{cases} u_t = (u^m)_{xx} & \text{with } x \in \mathbb{R}, t > 0, \\ u(x,0) = u_0(x) & \text{for } x \in \mathbb{R}, \end{cases}$$ where m > 1 and u_0 is a continuous, nonnegative function that vanishes outside an interval (a,b) and such that $(u_0^{m-1})^m < -C < 0$ in (a,b). Using a Trotter-Kato formula we show that the solution conserves the concavity in time: for every t > 0, u(x,t) vanishes outside an interval $\Omega(t) = (\zeta_1(t),\zeta_2(t))$ and $$(u^{m-1})_{xx} < -\frac{c}{1+c\frac{m(m+1)}{m-1}t}$$ in $\Omega(t)$. Consequently the interfaces $x = \zeta_1(t)$, i = 1,2, are concave curves. These results also give precise information about the large time behaviour of solutions and interfaces. AMS (MOS) Subject Classifications: 35%65, 76S05 Key Words: concavity, flow in porous media, Trotter-Kato formula, interfaces, asymptotic behaviour Work Unit Number 1 - Applied Analysis Division de Matematicas, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain. Equipe de Mathématiques, U.A.C.N.R.S. 741, Université de Franche-Comté, 25032 Besancon Cedex France. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and partly supported by Programme de Cooperation Franco-Espagnol 1984. Partly supported by USA-Spain Joint Research Grant CCB 8402023. #### SIGNIFICANCE AND EXPLANATION $^{\sim}$) The flow of a gas through a porous medium is governed by a degenerate quasilinear parabolic equation. It is known that the nonnegative solutions to this equation possess a lower bound for the second derivative of the pressure in the spatial variables. This bound plays an important role in the mathematical treatment and is related to the entropy of the flow. Since the solutions exhibit interfaces across which $v_{\cancel{x}}$ jumps positively, no upper bound is possible globally for value. Nevertheless we prove that the concavity of $v(\cdot,t)$ in the region where v is positive is preserved in time. This is in itself an interesting geometric property of the solution. It also allows one to obtain precise information about the asymptotic behaviour of the flow. | | Accession For | |---------------------|-------------------| | | NTIS GNAMI | | | DTIC TAB | | | Unnumeruped L | | | Justilication | | | | | | Ву | | | Distribution' | | | Availabling Codes | | | g vol1 100 100 | | ~ / | Dist Speciez | | QUALITY
ISPECTED | | | 3 | 101 | | | /T ' | The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the authors of this report. CONCAVITY OF SOLUTIONS OF THE POROUS MEDIUM EQUATION Philippe Benilan*,(1) and Juan Luis Vazquez**,(1),(2) #### Introduction We consider the Cauchy problem (P) $$\begin{cases} u_t = (u^m)_{xx} & \text{in } Q = R \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{for } x \in R \end{cases}$$ where m > 1 and u_0 is a non-negative continuous function vanishing outside a bounded interval (a,b) with $u_0(x) > 0$ for $x \in (a,b)$. It is well known (see for instance [V2] for general references on this problem) that there exists a unique generalized solution u(x,t) of (P) that is non-negative bounded and continuous on \overline{Q} . Moreover there exist two continuous monotone curves $x = \zeta_1(t)$, $x = \zeta_2(t)$ called the interfaces such that $\zeta_1(0) = a$, $\zeta_2(0) = b$ and $$\Omega \stackrel{\mathrm{def}}{=} \{(x,t) \in \mathbb{Q}; \ u(x,t) > 0\} = \{(x,t) \in \mathbb{Q}; \ \zeta_1(t) < x < \zeta_2(t)\} .$$ Also $u \in C^{\infty}(\Omega)$. In the description of the flow of a gas through a porous medium, u represents the density of the gas and $v=\frac{m}{m-1}\,u^{m-1}$ the pressure. We shall retain this denomination in the sequel. Of course $v\in C^\infty(\Omega)$ and it satisfies on Ω the equation (0.1) $$v_t = (m-1)vv_{xx} + v_x^2$$. Division de Matematicas, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid, Spain. Equipe de Mathématiques, U.A.C.N.R.S. 741, Université de Franche-Comté, 25032 Besancon Cedex France. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and partly supported by Programme de Cooperation Franco-Espagnol 1984. (2) Partly supported by USA-Spain Joint Research Grant CCB 8402023. We recall also the basic "convexity inequalities" (0.2) $$v_{xx} > -\frac{1}{(m+1)t}$$ in D'(Q) $$(0.3) \qquad (-1)^{\frac{1}{2}} (\zeta_{i}^{m} + \frac{m}{(m+1)t} \zeta_{i}^{*}) > 0 \quad \text{in} \quad D^{*}(\mathbb{R}^{+})$$ Now we assume that the initial pressure $v_0 = \frac{m}{m-1} u_0^{m-1}$ is concave in (a,b); more precisely we assume $$v_{0,xx} \leq -c \quad \text{in} \quad D^{\tau}(a,b)$$ with some constant C>0. The purpose of this paper is to study the concavity of the pressure v on Ω and of the interfaces ζ_1 on R^+ , and their consequences. The main result is THEOREM 1. Under assumption (0.4), the following "concavity inequalities" hold $$v_{xx} < -\frac{C}{1+(m+1)Ct} \text{ on } \Omega$$ (0.6) $$(-1)^{\frac{1}{i}}(\zeta_{i}^{m} + \frac{mC}{1 + (m+1)Ct}\zeta_{i}^{i}) < 0 \text{ in } D^{i}(\mathbb{R}^{+}) \text{ for } i = 1,2$$. In the case C = 0, the concavity (0.5) has already been proved by Graveleau and Jamet [GJ]. For proving (i) in the general case C > 0, we will follow their approach based on splitting (0.1) into the two equations (0.7) $$v_t = (m-1)vv_{xx}$$ $$v_t = v_x^2$$. We then recover (0.1) from (0.7), (0.8) via a Trotter-Kato formula. In the case C > 0, the combination of (0.5) and (0.6) with (0.2) and (0.3) gives strong information about the asymptotic behaviour of the pressure and the interfaces. It was proved in [V1] that this asymptotic behaviour is determined in first approximation by the two invariants of the motion, namely the total mass (0.9) $$M = \int u_0(x) dx = \int u(x,t) dx$$ and the center of mass (0.10) $$x_0 = M^{-1} \int x u_0(x) dx = M^{-1} \int x u_0(x) dx .$$ In fact there is a selfsimilar (Barenblatt) solution given in terms of the pressure by (0.11) $$\frac{-(x-x_0)^2}{v(x,t)} = \frac{[r(t)^2 - (x-x_0)^2]_+}{2(m+1)t}$$ with (0.12) $$r(t) = c(M^{m-1}t)$$, $c = c(m) > 0$, such that as $t + \infty$, $v - v = o(t^{-(m+1)})$ uniformly in $x \in \mathbb{R}$, $v_x + x/(m+1)t = o(t^{-1})$ uniformly in Ω , $\zeta_1(t) = x_0 + (-1)^{\frac{1}{2}}r(t) + o(1)$ and $\zeta_1^*(t) = (-1)^{\frac{1}{2}}r^*(t) + o(t^{-1})$. As a consequence of Theorem 1 these results can be improved as follows: THEOREM 2. Under the assumption (0.4) with C > 0 we have as $t + \infty$ (0.13) $$v_{xx}(x,t) = -\frac{1}{(m+1)t} + O(\frac{1}{t^2})$$ uniformly in x for $(x,t) \in \Omega$ and (0.14) $$\zeta_{1}^{n}(t) = (-1)^{\frac{1}{2}}r^{n}(t) \left(1 + 0\left(\frac{1}{t}\right)\right).$$ These rates of convergence are optimal as it can be easily checked on the time-delayed Barenblatt solutions $v(x,t;\tau) = v(x,t+\tau)$, where v is given by (0.11) and $\tau > 0$. From (0.13), (0.14) sharp estimates follow for v, v_x , ζ and ζ '. The main problem in proving concavity results lies in the fact that across a moving interface of a solution to problem (P) $\mathbf{v}_{\mathbf{X}}$ has a jump discontinuity, therefore $\mathbf{v}_{\mathbf{X}\mathbf{X}}$ is very singular and positive on the interfaces. Using equations (0.7), (0.8) allows to overcome this difficulty because the interfaces in (0.7) do not move while in (0.8) we are reduced to study the characteristic lines of a first-order equation. On the contrary in proving lower bounds for v_{XX} no such difficulty arises since we can always approximate our solution by smooth positive solutions and apply the maximum principle to the equation satisfied by v_{XX} as in the proof of (0.2), cf. [AB]. Thus if v is a solution of (0.1) whose initial datum v_0 satisfies (0.15) $$v_{0,xx} > -C \text{ in } D^{*}(\mathbb{R})$$ then できないという というとうには、「これになっている」できないとは (0.16) $$v_{xx} > -\frac{C}{1+(m+1)Ct}$$ in $D^{*}(Q)$. It is worth noting that we can always use the maximum principle method of [AB] when dealing with problem (P) for 0 < m < 1 (the so-called fast-diffusion case) or m = 1 (the heat equation) and the above results (0.5), (0.16) are true if we define $v = -\frac{m}{1-m} u^{-(1-m)}$ if m < 1, $v = \log(u)$ if m = 1. We shall leave the verification of these facts to the reader, but let us recall that $v \in C^{\infty}(Q)$ in both cases and v < 0 if m < 1. The plan of the paper is as follows: in section 1 we study the Cauchy problems associated to (0.7) and (0.8) for v_0 satisfying (0.4). We prove the statement about v_{XX} in Theorem 1 via the Trotter-Kato formula in section 2. Finally, section 3 studies the interfaces and the asymptotic behavior. #### 1. PRELIMINARIES In this section we study the Cauchy problems for equations $v_t = \lambda v v_{xx}$ and $v_t = v_x^2$. To make their application in Section 2 easier it is convenient to introduce the following notations. Let N be the set of continuous nonnegative functions $f: R \to R$ satisfying for some bounded interval I(f) = (a,b) $$f(x) = 0$$ if $x \notin (a,b)$, $f'' \le 0$ in $D'(a,b)$. It is clear that if $f \in N$, then either $f \equiv 0$ or $I(f) = \{x \in \mathbb{R}; f(x) > 0\}$. N is a closed set in the span $C_C(\mathbb{R})$ of continuous real functions on \mathbb{R} with compact support with the usual topology. To measure the concavity of a function $f \in N$ we define $$C(f) = \sup\{C > 0 ; f_{XX} < -C \text{ in } D^{*}(I(f))\}$$ $c(f) = \sup\{c > 0 ; cf_{XX} > -1 \text{ in } D^{*}(\mathbb{R})\}$ with the convention C(f) = 0 if $f \equiv 0$. Clearly $0 \leq C(f) \leq c(f)^{-1} \leq \infty$ and the maps $f \mapsto C(f)$, $f \mapsto c(f)$ are upper semi continuous functionals on N (endowed with the topology of $C_c(\mathbf{R})$). Let $N_1 = \{f \in \mathbb{N}; c(f) > 0\}$. The following results can be proved by elementary calculus. LEMMA 1.1. Let $f \in N_1$ with $f \neq 0$ and I(f) = (a,b). i) $$f \in W^{2,\infty}(a,b)$$ and $$C(f) = \inf ess - f'' \le \sup ess - f'' = c(f)^{-1}$$ $$(a,b) \qquad (a,b)$$ ii) $f \in W^{1,\infty}(\mathbb{R})$ and $$f \leqslant \frac{(b-a)^2}{c(f)}$$, $(f')^2 \leqslant \frac{2\|f\|_{\infty}}{c(f)}$ iii) $f' \in BV(R)$, $f'(a_+) > 0 > f'(b-)$ and $$f^{u} = f^{u}\chi_{(a,b)} + f^{t}(a_{+})\delta_{a} - f^{t}(b_{-})\delta_{b}$$ in $D^{t}(\mathbb{R})$. We solve first the Cauchy problem (1.4a) $$v_t = \lambda v v_{xx}$$ in $Q = R \times (0, \infty)$, (1.4b) $$v(x,0) = v_0(x) \text{ for } x \in \mathbb{R}$$, where λ is a positive constant and $v_0 \in \mathbb{N}$. We obtain PROPOSITION 1.2. Let $v_0 \in N$ and $I(v_0) = (a,b)$. There exists a unique function $v \in C(Q)$ that solves problem (1.4) in the sense that (a) v > 0 in Q, v is positive precisely on the set $\Omega = (a,b) \times (0,\infty)$ and $v \in C^{\infty}(\Omega)$. - (b) $v_t = \lambda v v_{xx} \underline{in} \Omega$. - (c) $v(x,0) = v_0(x)$ for every $x \in \mathbb{R}$. Moreover, if $v(t) = v(\cdot,t)$ then for every t > 0, $v(t) \in N_1$ and $$0 \leqslant v(t) \leqslant v_0 \quad \underline{in} \quad \mathbb{R} \quad ,$$ (1.6) $$-\frac{1}{c(v_0)+\lambda t} \leq v(t)_{xx} \leq -\frac{C(v_0)}{1+C(v_0)\lambda t} \quad \underline{in} \quad D'(a,b) .$$ If $c(v_0) > 0$ then for every $(x,t) \in Q$ (1.7) $$v_0(x) - v(x,t) < \frac{\lambda t v_0(x)}{c(v_0)}$$. <u>Proof.</u> Let us assume first that $c(v_0) > 0$. To avoid the degeneracy of the equation (1.4a) at the level v = 0 we begin by considering the problems $$\begin{cases} v_t = \lambda v v_{xx} & \text{in } \Omega = \{a < x < b, t > 0\} \\ v(x,0) = v_{0\epsilon}(x) & \text{for } a < x < b \end{cases}$$ $$v(a,t) = v(b,t) = \epsilon(\lambda t C(v_0) + 1)^{-1} \quad \text{for } t > 0 ,$$ where ϵ is positive and $\left\{v_{0\epsilon}\right\}_{\epsilon}$ is a sequence of C^{∞} , positive functions in [a,b] such that - i) $(v_{0\varepsilon})_{xx} \le C(v_0)$ and $(v_{0\varepsilon})_{xx} \ge 1/c(v_0)$, - ii) $v_{0\varepsilon} + v_0$ uniformly in [a,b] as $\varepsilon + 0$, - iii) $v_{0\varepsilon}(x) = \varepsilon$ and $v_{0\varepsilon,xx} = -C(v_0)$ at x = a,b. Since (P_{ε}) is a quasilinear parabolic problem and we have the a priori estimate ε < v(x,t) < $\sup_{x} \{v_{0\varepsilon}(x)\}$ for the solutions, by the standard theory (cf. [LSU]) there exists a solution $v_{\varepsilon} \in C^{\infty}(\overline{\Omega})$ of problem (P_{ε}) . Consider now the function $p(x,t) = v_{EXX}(x,t)$. It satisfies in Ω the equation $$p_t = \lambda v_e p_{xx} + 2\lambda v_{ex} p_x + \lambda p^2$$, with initial condition $p(x,0) = v_{0\epsilon,xx}(x)$ and boundary conditions $$p(a,t) = p(b,t) = -\frac{C(v_0)}{\lambda t C(v_0)+1}$$. (Note that $p = v_{\epsilon t}/(\lambda v)$.) Since for every k > 0 the function $$P(x,t;k) = -(\lambda t + k)^{-1}$$ is an explicit solution of the equation satisfied by p, it follows from the maximum principle that $$(1.8) \qquad -\frac{1}{\lambda t + c(v_0)} \leq p(x,t) \leq -\frac{c(v_0)}{\lambda t c(v_0) + 1}$$ in Ω . Since $p = v_{\varepsilon,xx}$ and $v_{\varepsilon}(a,t) = v_{\varepsilon}(b,t) \leqslant \varepsilon$ it follows from Diemma 1.1 and (1.8) that the following estimates $$0 > v_{\epsilon t} > -\frac{\lambda v_{\epsilon}}{\lambda t + c(v_{0})} ,$$ $$|v_{\epsilon}| < \epsilon + \frac{(b-a)^{2}}{2(\lambda t + c(v_{0}))} ,$$ $$|\mathbf{v}_{\varepsilon \mathbf{x}}|^2 < \frac{2\|\mathbf{v}_0\|_{\infty}}{c(\mathbf{v}_0) + \lambda t}$$ and $|\mathbf{v}_{\varepsilon \mathbf{x}}| < \frac{(b-a)}{2(c(\mathbf{v}_0) + 2t)}$ hold in Ω . Therefore if we pass to the limit ε +0 there is a subsequence $\{v_{\varepsilon_k}\}$ of $\{v_{\varepsilon}\}$ that converges uniformly in $[a,b]\times [0,T]$ for every T>0 to a function $v\in C(\overline{\Omega})$ and the above estimates hold for v so that $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ for every $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ for every $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ for every $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ is uniformly bounded away from $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ the sequence $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ is uniformly bounded away from $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ and $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ is satisfied in the classical sense. It is also clear that $v\in W^{1,\infty}((a,b)\times (\tau,\infty))$ and both the initial and boundary conditions are satisfied. To obtain a solution v in Q we extend \overline{v} by v(x,t) = 0 if $x \notin (a,b)$ and t > 0. The uniqueness of the solution is a consequence of the maximum principle (it follows in particular that all the sequence $\{v_{\varepsilon}\}$ converges to v). In fact if we have two solutions v, w of (1.4) corresponding to initial data v_0 , $w_0 \in N_1$ and $v_0 > w_0$ then v > w in Q. In case $c(v_0) = 0$ we can yet use the above procedure to obtain a solution and only the convergence at $t \to 0$ poses a problem that can be solved by approximating the initial data v_0 above and below with data in N_1 and using the above comparison results. REMARK. Independently of the authors M. Ughi [U] has studied the equation $u_t = uu_{xx} - u(1-u)$ in $R \times (0,T)$, for initial data not necessarily concave. She obtains results about existence, uniqueness and nonuniqueness for suitable classes of weak solutions. The results apply to equation (1.4a) with obvious changes. Consider now the initial-value problem $$v_t = |v_x|^2 \quad \text{in } Q ,$$ (1.9b) $$v(x,0) = v_0(x) \text{ for } x \in \mathbb{R}$$. Equation (1.9a) is one of the simplest and best-known examples of Hamilton-Jacobi equation. There is now a general theory of viscosity solutions for equations of the type $u_t + H(u_x) = 0$ where H is a continuous function. In particular we have the following result proved by Crandall and P. L. Lions. PROPOSITION 1.3. [cf. [CL], Theorem VT.2). Let $v_0 \in BUC$ We, the set of bounded uniformly continuous functions in R. There exists a unique $v \in C(Q)$, which is a viscosity solution of $u_t + H(u_x) = 0$ in Q with initial data $v(x,0) = v_0(x)$. Moreover the maps T(t) : BUC(R) + BUC(R) defined for t > 0 by $T(t)v_0 = v(\cdot,t)$ form a strongly continuous, order-preserving contraction semigroup in BUC(R). The fact that in problem (1.9) the nonlinearity $H(p) \approx p^2$ is convex considerably simplies the construction of the solutions of (1.9), especially if the initial data $v_0 \in \mathbb{N}$. In this case we can use the classical method of characteristics (cf. [Bt], [L]) as follows. Assume for simplicity that $v_0 \in C^1([a,b])$, where (a,b) is the support of v_0 . Through every point $(\xi,0)$ with $a < \xi < b$ we construct a characteristic line (1.10) $$x(\xi,t) = \xi - 2v_0^*(\xi)t$$. Along this line the derivative $w=v_x$ of every classical solution of $v_t=|v_x|^2$ must be constant. Therefore we get (1.11) $$v(x,t) = v(\xi,0) + \int_0^t \frac{d}{d\tau} v(x(\tau),\tau)d\tau = v_0(\xi) - |v_0(\xi)|^2 t$$. The concavity of v_0 in (a,b) implies that these characteristics do not cross each other. In that way a C^1 solution of (1.9a) can be constructed in the region where v>0. It is easy to see that this region has the form (1.12) $$\Omega = \{(x,t) \in Q : s_1(t) < x < s_2(t)\}$$ where $x = s_1(t)$ and $x = s_2(t)$ are Lipschitz-continuous curves (the interfaces), $s_1(0) = a$, $s_2(0) = b$, and $(-1)^{\frac{1}{2}}s_{\frac{1}{2}}(t)$ is nondecreasing in time. Along the interfaces the derivative v_x is discontinuous, i.e. a chock propagates according to the well-known Rankine-Hugoniot conditions. The following results about problem (1.9) will be needed in the proof of Theorem 1. PROPOSITION 1.4. Let v be the viscosity solution of (1.9) with $v_0 \in \mathbb{R}$. Then $v \in W^{1,\infty}(Q_{\tau})$ for every $\tau > 0$, $v(t) = T(t)v_0 \in \mathbb{R}$ for every t > 0 and (1.13a) $$c(v(t)) > c(v_0) + 2t$$, (1.13b) $$C(v(t)) > \frac{C(v_0)}{1+2tC(v_0)}$$, Moreover if $c(v_0) > 0$ then (1.14) $$v(t) - v_0 \le \frac{2t \|v_0\|_{\infty}}{c(v_0)}$$. <u>Proof.</u> By the contracting property of T(t) we may assume that $C(v_0)$, $c(v_0) > 0$ and $v_0 \in C^1([a,b])$. To prove (1.13) let t > 0 and let x_1 and x_2 be two points $s_1(t) \le x_1 \le x_2 \le s_2(t)$. There are well-defined starting- points ξ_1 and ξ_2 in (a,b) for the characteristic line (1.10) through (x_1,t) and (x_2,t) respectively. Setting $w_1=v_{\mathbf{x}}(x_1,t)$, $w_2=v_{\mathbf{x}}(x_2,t)$ we have $$x_1 - x_2 = \xi_1 - \xi_2 + 2t(w_2 - w_1)$$. But v_x is constant along the characteristics, hence $w_2 - w_1 = v_0^*(x_2) - v_0^*(x_1) > 0$ since v_0 is strictly concave. Therefore if we write $$\frac{x_1^{-x_2}}{w_2^{-w_1}} = \frac{\xi_1^{-\xi_2}}{w_2^{-w_1}} + 2t$$ and let $x_1 - x_2 + 0$ we obtain the relationship (1.15) $$\frac{1}{v_{xx}(x,t)} = \frac{1}{v_0^n(\xi)} + 2t$$ valid in Ω . (1.13) follows immediately. From this we get (1.16) $$v_t = v_x^2 < \frac{2\|v_0\|_{\infty}}{2t + c(v_0)}$$. (1.14) is now immediate. #### 2. THE TROTTER-KATO FORMULA Let us now consider the problem (2.1a) $$v_t = (m-1)vv_{xx} + v_x^2$$ in Q (2.1b) $$v(\cdot,0) = v_0 \in N$$. To solve (3.1) we shall use a Trotter-Kato formula based on the results of the previous section (with λ = m-1). It is interesting in that respect to think of the solution v(x,t) of problem (1.4) as a semigroup S(t): N+N, t>0, defined by $S(t)v_0=v(t)$ if $v(t)=v(\cdot,t), v$ being the solution of (1.4) with initial data v_0 . In the same way the solution to problem (1.9) defines another semigroup T(t): N+N, t>0. Both are order-preserving continuous semigroups in N. The concavity estimates (1.6), (1.13) can be reformulated as (2.2a) $$c(S(t)v_0) > c(v_0) + (m-1)t$$, (2.2b) $$c(T(t)v_0) > c(v_0) + 2t$$, (2.2c) $$C(s(t)v_0) > \frac{C(v_0)}{1+(m-1)C(v_0)t}$$, and (2.2d) $$C(T(t)v_0) > \frac{C(v_0)}{1+2C(v_0)t}$$. Result of the type of Chernoff and Trotter-Kato formulas for pairs of continuous semigroups are known when both semigroups are contractive in some Banach space X, cf. [BCP]. Unfortunately in our case, while the semigroup T is contractive in $L^{\infty}(\mathbb{R})$ or BUC(\mathbb{R}), the semigroup S is not. In fact the only contraction properties known for the solutions of (1.4) apply to the function $u = \log(v)$, which satisfies the equation $u_t = \lambda(\exp(u))_{XX}$, cf. [BC]. The convergence of our Trotter-Kato formula relies on the compactness due to (2.2). We proceed as follows. For every $\varepsilon>0$ we define the approximate solution $v_\varepsilon(t)$ to problem (2.1) by (2.3) $$\mathbf{v}_{\varepsilon}(t) = \frac{t - (n-1)\varepsilon}{\varepsilon} \mathbf{v}_{\varepsilon}^{n} + \frac{n\varepsilon - t}{\varepsilon} \mathbf{v}_{\varepsilon}^{n-1}$$ if $(n-1)\varepsilon \le t \le n\varepsilon$, where for n = 1, 2, ... (2.4) $$v_{\varepsilon}^{n} = (S(\varepsilon)T(\varepsilon))^{n}(v_{0}) ,$$ we obtain the following convergence result PROPOSITION 2.1. As $\varepsilon + 0$, v_{ε} converges to a function $v \in (\overline{Q}) \cap W^{1,\infty}(Q_{\overline{1}})$ for every $\tau > 0$ uniformly on compact subsets of $Q = R \times [0,\infty)$, v satisfies (2.5) $$v_t = \frac{m-1}{2} (v^2)_{xx} - (m-2) v_x^2$$ in D'(Q). Moreover if v(t) : x + v(x,t) then for every t > 0, $v(t) \in 1$ and (2.6a) $$C(v(t)) > \frac{C(v_0)}{1+(m+1)t}$$ (2.6b) $$c(v(t)) > c(v_0) + (m+1)t$$. Also (2.7) $$v_x^2 < \frac{2\|v_0\|_{\infty}}{c(v_0) + (m+1)t}$$, (2.8) $$\frac{(m-1)\|v_0\|_{\infty}}{c(v_0)+(m+1)t} \le v_t \le \frac{2\|v_0\|_{\infty}}{c(v_0)+(m+1)t} .$$ Proof. By induction we have $v_{\varepsilon}^{n} \in N_{1}$, $$(2.9a) 0 < v_{\varepsilon}^{n} < T(n\varepsilon)v_{0} < \|v_{0}\|_{\infty} ,$$ (2.9b) $$C(v_0^n) > \frac{C(v_0)}{1+(m+1) \operatorname{ne}C(v_0)},$$ (2.9c) $$c(v_{\varepsilon}^{n}) > c(v_{0}) + (m+1)n\varepsilon$$, (2.9d) $$\sup_{\varepsilon} (\mathbf{v}_{\varepsilon}^{\mathbf{n}}) \subset \sup_{\varepsilon} (\mathbf{T}(\mathbf{n}\varepsilon)\mathbf{v}_{0})$$. Observe that (2.9a) follows from the fact that $S(\varepsilon)v \le v$ and $T(\varepsilon)$ and $S(\varepsilon)$ are order-preserving maps. (2.9b) and (2.9c) follow from (2.2) and finally (2.9d) is a consequence of (2.9a). Assume now that $c(\mathbf{v}_0) > 0$ and fix $\mathbf{t}_0 > 0$. We have $\mathbf{v}_{\varepsilon} \in \mathbb{W}^{1,\infty}(\mathbb{R} \times (0,\mathbf{t}_0)) \ ,$ $0 < \mathbf{v}_{\varepsilon} < \|\mathbf{v}_0\|_{\infty} \ ,$ $\sup_{\mathbf{v}_{\varepsilon} \in \mathbb{W}} (\mathbf{t}_0) \subset \sup_{\mathbf{v}_0} (\mathbf{T}(\mathbf{t}_0 + \varepsilon)\mathbf{v}_0) \ \text{if} \ 0 < \mathbf{t} < \mathbf{t}_0 \ ,$ $\mathbf{v}_{\varepsilon, \mathbf{x}}^2 < 2\|\mathbf{v}_0\|_{\infty}/c(\mathbf{v}_0) \ .$ Moreover $$\frac{\mathbf{d}^{\dagger}\mathbf{v}_{\varepsilon}}{dt} = \frac{\mathbf{S}(\varepsilon)\mathbf{w}_{\varepsilon} - \mathbf{w}_{\varepsilon}}{\varepsilon} + \frac{\mathbf{T}(\varepsilon)\widetilde{\mathbf{v}}_{\varepsilon} - \widetilde{\mathbf{v}}_{\varepsilon}}{\varepsilon} ,$$ where $\tilde{v}_{\varepsilon}(t) = v_{\varepsilon}^{n-1}$ if $(n-1)\varepsilon < t < n\varepsilon$ and $w_{\varepsilon} = T(\varepsilon)\tilde{v}_{\varepsilon}$. Since $c(w_{\varepsilon}(t)) > c(\tilde{v}_{\varepsilon}(t)) + 2\varepsilon > c(v_{0})$ we have by (1.7) and (1.14) $$-\frac{(m-1)\|v\|_{\infty}}{c(v_0)} < \frac{d^{+}v_{\varepsilon}}{dt} < \frac{2\|v\|_{\infty}}{c(v_0)}.$$ It follows in particular that v_{ϵ} is relatively compact in $C(\mathbb{R}\times [0,t_0])$. If v_{ϵ} converges uniformly to a function $v\in C(\mathbb{R}\times [0,t_0])$ along a sequence $\epsilon=\epsilon_k + 0$, we have $v\in W^{1,\infty}(\mathbb{R}\times [0,t_0])$ $$0 < v < T(t)v_0$$, $|v_x^2| < \frac{2\|v_0\|_{\infty}}{c(v_0)}$ and $$-\frac{(m-1)\|v_0\|_{\infty}}{c(v_0)} < v_t < \frac{2\|v_0\|_{\infty}}{c(v_0)}.$$ Furthermore the estimates (2.6a) and (2.6b) follow from (2.9b) and (2.9c) and the upper-semi-continuity of the functionals c and C. To end the proof of the proposition we have yet to check that equation (2.5) holds. For that we write $$\frac{d^{\dagger}v_{\varepsilon}}{dt} = \frac{1}{\varepsilon} \int_{0}^{\varepsilon} (S(\tau)w_{\varepsilon}(t))_{\tau} d\tau + \frac{1}{\varepsilon} \int_{0}^{\varepsilon} (T(\tau)\widetilde{v}_{\varepsilon}(t))_{\tau} d\tau =$$ $$= \frac{m-1}{2\varepsilon} \int_{0}^{\varepsilon} \{(S(\tau)w_{\varepsilon}(t))\}_{xx} d\tau + \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \{(T(\tau)\widetilde{v}_{\varepsilon}(t))_{x}\}^{2} d\tau -$$ $$- \frac{m-1}{\varepsilon} \int_{0}^{\varepsilon} \{(S(\tau)w_{\varepsilon}(t))_{x}\}^{2} d\tau \equiv I_{1} + I_{2} + I_{3} .$$ We want to pass to the limit ε + 0. Let us begin for instance with I_2 . Since v_{ε_k} + v uniformly in $\mathbb{R} \times [0,t_0]$, using also (1.14) it follows that $\sup_{0 \le \tau \le \varepsilon} \|T(\tau)\widetilde{v}_{\varepsilon}(t) - v(t)\|_{\infty} \equiv 0 \text{ as } \varepsilon_k + 0 .$ If we now observe that $c(T(\tau)\widetilde{v}_{\epsilon}(t)) > c(v_0)$ and $supp(T(\tau)\widetilde{v}_{\epsilon}(t)) \subset supp T(((t_0+\epsilon)v_0) \subset [-R,R]$ for some R > 0 the convergence $|(T(\tau)\widetilde{v}_{\epsilon}(t))_{\chi}|^2 + |v(t)_{\chi}|^2 \text{ in } C([0,t_0];L^1(\mathbb{R}))$ will hold uniformly in $\tau \in (0,\epsilon)$ as a consequence of the following compactness result applied to the family $\{f_{t,\tau,\epsilon}(x) = T(\tau)\widetilde{v}_{\epsilon}(t)\}, 0 < t < t_0,$ $\epsilon > 0, 0 < \tau < \epsilon.$ LEMMA 3.2. For every constant c_0 , R > 0 the set $$N_{c_0,R} = \{f \in N : c(f) > c_0, supp(f) \subset [-R,R]\}$$ is a compact subset of $W^{1,p}(R)$ for any $p \in [1,\infty)$. Moreover there exist constants $C = C(c_0,R) > 0$ and $\theta \in (0,1)$ such that (2.12) If $_1^{-f}c_1^{\parallel}_{\parallel} 1, p_{(R)} \le C\|f\|_1^{-f}c_1^{\parallel}\|_{L^p(R)}^{\theta}$ For any two functions fifz & Ncn, R. For a proof of this result see [L, Lemma 10.1]. It is based on proving that $N_{C_0,R}\subset W^{S,p}(\mathbb{R})$ for some s>1 and p>1 and then using interpolation. Continuing with the proof of Proposition 3.1 it follows from (2.11) that $I_2 = \frac{1}{\varepsilon} \int_0^\varepsilon \{ (\mathbf{T}(\tau) \tilde{\mathbf{v}}_{\varepsilon}(t))_{\mathbf{x}} \}^2 + |\mathbf{v}(t)_{\mathbf{x}}|^2 \text{ in } C([0,t_0], \mathbf{L}^1(\mathbf{R})) .$ In the same way we prove that $I_1 \equiv \frac{1}{\varepsilon} \int_0^\varepsilon \{(s(\tau)w_\varepsilon(t))_x\}^2 d\tau + (v(t)_x)^2 \quad \text{in } C([0,t_0] \text{ , } L^1(\mathbb{R})) \text{ .}$ Finally since $$F_{\varepsilon}(t) = \frac{1}{\varepsilon} \int_{0}^{\varepsilon} (S(\tau)w_{\varepsilon}(t))^{2} d\tau + v(t)^{2} \text{ in } C(\mathbb{R} \times [0,t_{0}])$$ it follows that $I_3 = F_{\varepsilon}(t)_{xx} + (v(t)^2)_{xx}$ in $D^{\varepsilon}(R \times (0,t_0))$. Therefore we may let $\varepsilon_k + 0$ in (2.10) to obtain (2.5). The case $c(\mathbf{v}_0) = 0$ is easily dealt with by comparison since for every $\delta > 0$ - i) $S(\delta)v_0 \le v_0 \le T(\delta)v_0$ and $IT(\delta)v_0 S(\delta)v_0|_{\infty} \to 0$ as $\delta \to 0$, - ii) $c(S(\delta)v_0) > 0$, $c(T(\delta)v_0) > 0$. To conclude the proof of the first part of Theorem 1 we have to identify the function v as the pressure of the solution to problem (0.1). PROPOSITION 2.3. Let $v \in C(\overline{Q}) \cap W^{1,\infty}(Q_T)$ for every $\tau > 0$ satisfy - i) for every t > 0, $v(\cdot,t) \in N$ - ii) $v_t = \frac{m-1}{2} (v^2)_{xx} + (2-m) |v_x|^2 \underline{in} D'(Q)$ - iii) $v(\cdot,0) = \frac{m}{m-1} u_0^{m-1}$ CONTRACT CON where u₀ is nonnegative, continuous and bounded. Then v is the pressure associated to the solution of (0.1). <u>Proof.</u> Let $u = ((m-1)v/m)^{\frac{1}{m-1}}$ and let u be the usual solution of (0.1). By the preceding results if Ω is the subregion of Q where v is positive Ω has the form $\{(x,t) \in Q : s_1(t) < x < s_2(t)\}$ and we have $u \in C(\overline{\Omega})$. Also (by standard regularity theory) $u \in C^{\infty}(\Omega)$ and $u_t = (u^m)_{xx}$ is satisfies in Ω in the classical sense. Since $u \le u$ on the parabolic boundary of Ω by the maximum principle we get $u \le u$ in Ω . Moreover since $(u^{m})_{x} = uv_{x}$ and $v(\cdot,t) \in \mathbb{N}$ it is easy to see that $(u^{m})_{x} + 0$ as (x,t) tends to the lateral boundary of Ω , hence for every t > 0 $$\frac{d}{dt} \int u(x,t) dx = \left[(u^{m})_{x} \right]_{x=s_{1}(t)}^{x=s_{2}(t)} = 0$$ and we have $$\int u(x,t) dx = \int u_0(x) dx = \int \overline{u}(x,t) dx .$$ Therefore $u = \overline{u}$ in Q. #### 3. INTERFACES AND ASYMPTOTIC BEHAVIOUR In this section we complete the proof of Theorem 1 by studying the concavity of the interfaces of the solutions to problem (P) and derive its consequences for the asymptotic behaviour of solutions and interfaces, Theorem 2. #### Proof of the concavity of statement (0.6) of Theorem 1. We may assume that v is a solution of (0.4) whose initial datum v_0 satisfies (0.4) with C>0. Also we may consider only the right-hand interface and drop the subindex, $\zeta(t)=\zeta_2(t)$. Following the idea of the proof of the converse inequality (0.3) ([CF], [V1]) we compare our solution v with the Barenblatt solution v that has best contact with it, this time from above, at a given point of the interface, the main difference lying in the fact that we have to use a time-delayed Barenblatt. The outline of the proof is as follows: let $t_1>0$. Since $v(\cdot,t_1)$ is strictly concave in its support, cf. (0.5), $v_{\chi}(\zeta(t_1)-0$, $t_1)$ is necessarily negative, therefore by the interface equation (3.1) $$\zeta'(t) = -v_{\chi}(\zeta(t) - 0, t)$$ ([A], [K]) we have $\zeta'(t)$. We consider the Barenblatt solution (3.2) $$w(x,t) = \frac{(r(t+\tau)^2 - (x-x_1)^2)_+}{2(m+1)(t+\tau)}$$ where r(t) is as in (0.12). The parameters M, $\tau > 0$ and $x_1 \in \mathbb{R}$ shall be adjusted so as to have (i) $$v(\zeta(t_1),t_1) = w(\zeta(t_1),t_1)$$ (ii) $$v_{x}(\zeta(t_{1})-0,t_{1}) = w_{x}(\zeta(t_{1})-0,t_{1})$$ (iii) $$v_{xx}(\xi,t_1) \le w_{xx}(\xi,t_1)$$ whenever $v(\xi,t_1) > 0$. By (0.5) and (3.2) the last inequality is implied by $$-\frac{c}{1+(m+1)Ct_1} < -\frac{1}{(m+1)(t_1+\tau)},$$ namely $\tau > 1/((m+1)C)$. The best choice is $$\tau = 1/((m+1)C)$$. We can now choose M and x_1 so that (i) and (ii) are satisfied. It follows from (i) - (iii) that $v(\cdot,t_1) < w(\cdot,t_1)$. Since both v and w are solutions of (0.7) in $S = \mathbb{R} \times (t_1,\infty)$ it follows that v(x,t) < w(x,t) in S. Therefore for every $t > t_1$ we have $$\zeta(t) < \zeta_{\omega}(t) \ge x_1 + r(t+\tau)$$. Since at $t = t_1$ we have $\zeta(t_1) = \zeta_w(t_1)$ and $\zeta'(t_1) = \zeta_w'(t_1)$ (by (i), (ii)) and (3.3) $$\zeta_{w}^{"}(t) = -\frac{m}{(m+1)(t+\tau)} \zeta_{w}^{"}(t)$$ we conclude as in [CF], [V1] that (3.4) $$\zeta''(t_1) \leq -\frac{m}{(m+1)(t_1+\tau)} \zeta'(t_1)$$ in the sense of measures in $(0,\infty)$, i.e. (0.6). (0.3) and (0.6) together imply that ζ^* is a locally bounded function. (0.6) can be reformulated as saying that $\zeta^*(t)/r^*(t+\tau)$ is nonincreasing as a function of t. We now study the asymptotic behaviour. We state in detail the results for the interface. PROPOSITION 3.1. Let v be a solution of (0.4) such that v₀ satisfies (0.4) with $$c > 0$$ and let $\tau = 1/((m+1)C)$. Then as $t + \infty$ we have (3.5) $$r(t) + x_0 \le \zeta(t) \le r(t+\tau) + x_0$$ (3.6) $$r'(t) > \zeta'(t) > r'(t+\tau)$$. Moreover $\zeta(t) - r(t+\tau) + x_0$ and $\zeta'(t)/r'(t+\tau) + 1$. <u>Proof.</u> Since $\zeta'(t)/r'(t+\tau)$ is nonincreasing and $\zeta(t)/r(t)+1$, cf. [V1], it follows that $\zeta'(t)/r'(t+\tau)+1$. Therefore $\zeta(t)-r(t+\tau)$ is nondecreasing. Since $r(t+\tau)-r(t)+0$ and $\zeta(t)=r(t)+x_0$ as $t+\infty$ ([V1]) we have $\zeta(t)-r(t+\tau)+x_0$. This proves the right-hand inequalities. The left-hand inequalities were proved in [V1]. COROLLARY 3.2. As t + = (3.7) $$|\zeta(t) - (r(t) + x_0)| \le C_1 \tau t^{-\frac{m}{m+1}}$$ (3.8) $$|\zeta'(t) - r'(t)| < C_2^{\pi t}$$ $-(\frac{m}{m+1} + 1)$ (3.9) $$|\zeta^{m}(t) - r^{m}(t)| \le C_{3}\tau t^{-(\frac{m}{m+1} + 2)}$$ where C₁, C₂, C₃ depend only on m. <u>Proof.</u> (3.7) and (3.8) follow resp. from (3.5) and (3.6). Then the estimate for ζ^{w} follows from this, (0.3) and (0.6). To end the proof of Theorem 2 we remark that (0.13) comes from (0.2) and (0.5). By integration we obtain estimates for v and v_x . It is to be remarked that the estimates for v, v_x , ζ and ζ' are valid also in the case of symmetric solutions without the assumption of concavity, cf. [V1, Theorem B]. In that case the result extends to several space dimensions. Let us finally remark another consequence the above results. COROLLARY 3.3. The interface of a concave solution to problem (P) has zero waiting time. More precisely with the above notations we have (3.10) $$\zeta'(0) > r_{M}'(\tau) = (c/(m+1))(M^{m-1}\tau^{-m})^{1/(m+1)}$$ (3.11) $$\zeta'(0) > C(b-a)/2$$. #### REFERENCES - [A] ARONSON, D. C., Regularity properties of flows through porous media: the interface, Arch. Rat. Mech. Anal. 37 (1970), 1-10. - [AB] ARONSON, D.C. BENILAN, Ph., Régularité des solutions de l'équation des milieux poreux dans Rⁿ, C. R. Acad. Sci. Paris 288 (1979), 103-105. - [BC] BENILAN, Ph. CRANDALL, M. G., The continuous dependence on ϕ of the solutions of u_t $\Delta \phi(u)$ = 0, Indiana Univ. Math. J. 30 (1981), 161-177. - [BCP] BENILAN, Ph. CRANDALL, M. G. PAZY, A., ENTITY Of 'educations' governed' by accretive operators, to appear (- [Bt] BENTON, S. H., The Hamilton-Jacobi equation: a global approach, Academic Press, New York 1977. - [CF] CAFFARELLI, L. A. FRIEDMAN, A., Regularity of the free-boundary for the one-dimensional flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193-1218. - [CL] CRANDALL, M. G.- LIONS, P. L., <u>Viscosity solutions of Hamilton-Jacobi</u> equations, Trans. Amer. Math. Soc. <u>277</u> (1983), 1-42. - [GJ] GRAVELEAU, J. L. JAMET, P., A finite-difference approach to some degenerate nonlinear parabolic equations, SIAM J. Appl. Math. 29 (1971), 199-223. - [K] KNERR, B. F., The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. - [LSU] LADYZHENSKAJA, O. A. SOLONNIKOV, V. A. URAL'CEVA, "Linear and Quasilinear equation of parabolic type", AMS Translations, Providence, 1969. (Nauka, Moscow, 1967). - [L] LIONS, P. L., "Generalized solutions of Hamilton-Jacobi equations", Research Notes in Math #69, Pitman, Boston, 1982. - [U] UGHI, M., A degenerate parabolic equation modelling the spread of an epidemic, to appear in Annali Mat. Pura Appl. - [V1] VAZQUEZ, J. L., Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527. - [V2] VAZQUEZ, J. L., The interfaces of one-dimensional flows in porous media, Trans. Amer. Math. Soc. 285 (1984), 717-737. | REPORT DOCUMENTATION | READ INSTRUCTIONS BEFORE COMPLETING FORM | | |----------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------| | 1. REPORT NUMBER | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | #2851 | AD-A160 9 | 69 | | 4. TITLE (and Subtitle) | | 5. TYPE OF REPORT & PERIOD COVERED | | | | Summary Report - no specific | | CONCAVITY OF SOLUTIONS OF THE PORC | reporting period | | | MEDIUM EQUATION | | 6. PERFORMING ORG. REPORT NUMBER | | 7. AUTHOR(e) | | 8. CONTRACT OR GRANT NUMBER(a) | | Philippe Benilan and Juan Luis Va | azquez | DAAG29-80-C-0041 | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | Mathematics Research Center, Univ | Work Unit Number 1 - | | | 610 Walnut Street | Wisconsin | Applied Analysis | | Madison, Wisconsin 53705 | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | | 12. REPORT DATE | | U. S. Army Research Office | | August 1985 | | P. O. Box 12211 | | 13. NUMBER OF PAGES | | Research Triangle Park, North Carolina 27709 | | 22 | | 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | | 15. SECURITY CLASS. (of this report) | | | | UNCLASSIFIED | | _ | | 15. DECLASSIFICATION/DOWNGRADING SCHEDULE | | 16. DISTRIBUTION STATEMENT (of this Report) | | | Approved for public release: distribution unlimited. - 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) - 18. SUPPLEMENTARY NOTES - 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) concavity, flow in porous media, Trotter-Kato formula, interfaces, asymptotic behaviour 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) We consider the problem (P) $$\begin{cases} u_t = (u^m)_{xx} & \text{with } x \in \mathbb{R}, t > 0, \\ u(x,0) = u_0(x) & \text{for } x \in \mathbb{R}, \end{cases}$$ where m > 1 and u_0 is a continuous, nonnegative function that vanishes DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED (continued) ABSTRACT (continued) outside an interval (a,b) and such that $(u_0^{m-1})^m \le -C \le 0$ in (a,b). Using a Trotter-Kato formula we show that the solution conserves the concavity in time: for every t > 0, u(x,t) vanishes outside an interval $\Omega(t) = (\zeta_1(t),\zeta_2(t))$ and $$(u^{m-1})_{xx} \le -\frac{C}{1 + C \frac{m(m+1)}{m-1} t}$$ in $\Omega(t)$. Consequently the interfaces $x = \zeta_i(t)$, i = 1,2, are concave curves. These results also give precise information about the large time behaviour of solutions and interfaces. # END ## FILMED 12-85 DTIC